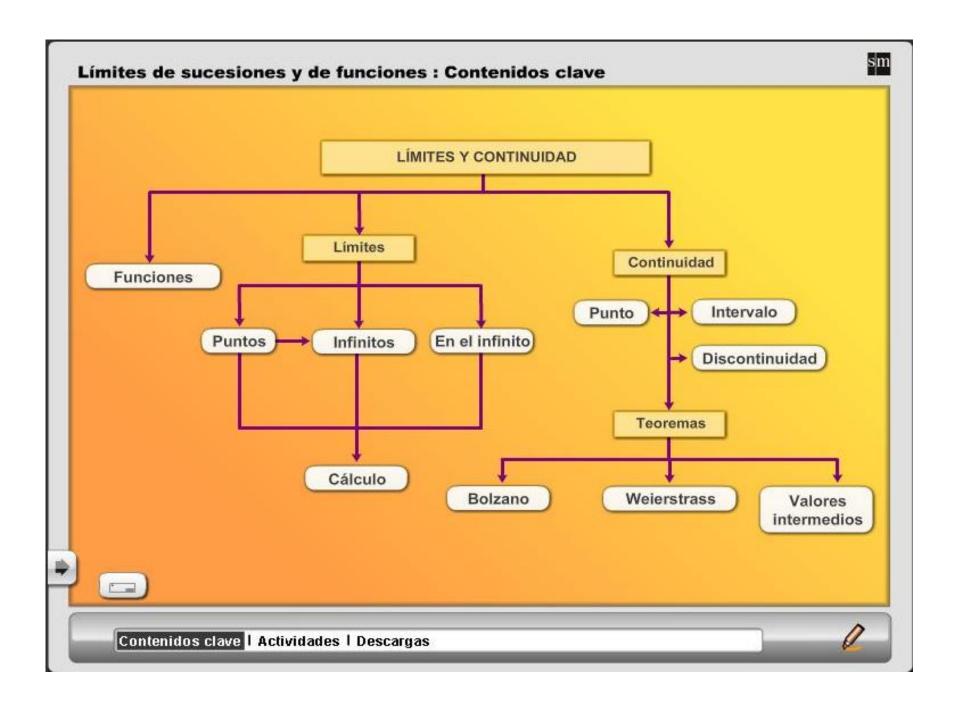
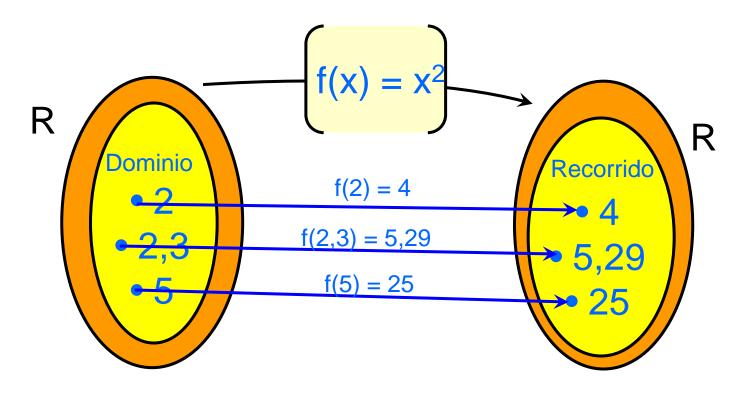
Límites y continuidad 1º Bachillerato

ELABORADO CON EDITORIAL SM



FUNCIÓN REAL DE VARIABLE REAL: EJEMPLO I

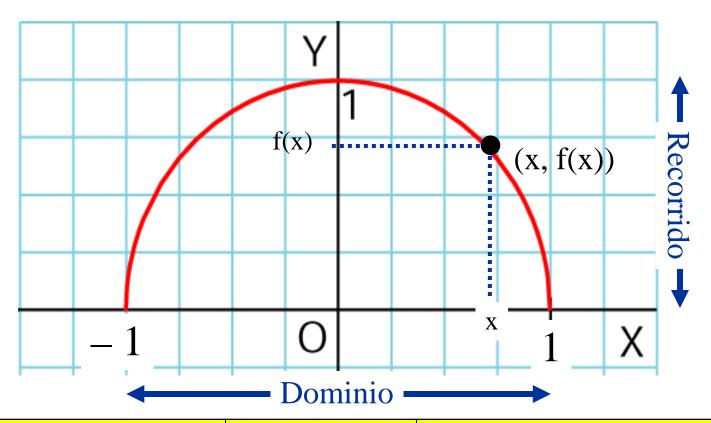
La fórmula $f(x) = x^2$ relaciona dos variables reales



Para que sea aplicación ha de cumplir dos condiciones:

- Todo elemento de D ha de tener imagen.
- Esta imagen ha de ser única.

FUNCIÓN REAL DE VARIABLE REAL: EJEMPLO II



Variable independiente	Ley de asociación	Variable dependiente
X	f	y = f(x)
Dominio D = [-1, 1]	$f(x) = \sqrt{1 - x^2}$	Recorrido f([-1, 1]) = [0, 1]

LÍMITE DE UNA FUNCIÓN EN UN PUNTO: DEFINICIÓN INTUITIVA

Si a y b son dos números, la expresión $\lim_{x\to a} f(x) = b$

quiere decir que si la variable independiente x toma valores próximos al número a, los correspondientes valores de f(x) se aproximan al número b

Importante: si existe el límite de una función en un punto, dicho límite debe ser un número y además único.

Ejemplo: La función $f(x) = \frac{x^2 - 1}{x^2 - 3x + 2}$ no está definida en los puntos 1 y 2. ¿Cómo se comporta cuando x toma valores cada vez más próximos a 1?

					$\rightarrow \longleftarrow$				
X	0,98	0,99	0,999	0,9999	1	1,0001	1,001	1,01	1,1
f(x)	-1,9412	-1,9703	-1,9970	-1,9997	no existe	-2,0003	-2,003	-2,0303	-2,3333

- Cuando x se acerca a 1 por la derecha f(x) se acerca a − 2
- Cuando x se acerca a 1 por la izquierda f(x) se acerca a − 2

Se escribe
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = -2$$

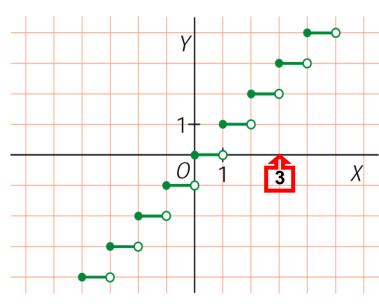
LÍMITES LATERALES DE UNA FUNCIÓN

- Se dice que el número b es el límite de f(x) cuando x tiende hacia a por la derecha (izquierda), si al tomar valores x estrictamente mayores (menores) próximos al número a, los correspondientes valores de f(x) se aproximan al número b. Se designa lim f (x) = b (lim f (x) = b).
- Una función se dice que tiene límite en un punto si y sólo si existen los límites laterales y ambos son iguales.

Ejemplo: la función Ent(x) = «mayor n° entero menor o igual a x» tiene una gráfica como la siguiente. Se observa que:

• $\lim_{x \to 3^{-}} \operatorname{Ent}(x) = 2$

Como los límites laterales no coinciden la función no tiene límite cuando $x\rightarrow 3$.



PROPIEDADES DE LOS LÍMITES DE FUNCIONES

Sean f(x) y g(x) dos funciones tales que $\lim_{x\to a} f(x) = p$ y $\lim_{x\to a} g(x) = q$

1.
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = p \pm q$$
.

- 2. Si k es un número real $\lim(k \cdot f(x)) = k \cdot \lim f(x) = k \cdot p$
- 3. $\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = p \cdot q.$
- 4. Si q no es cero, $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{p}{q}.$
- 5. Si p^q es un número real, $\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} f(x) \Big|_{x \to a}^{\lim g(x)} = p^q$.

LÍMITES INFINITOS DE UNA FUNCIÓN EN UN PUNTO: DEFINICIÓN

• Se dice que el límite de f(x) cuando x tiende hacia el punto "a" es **mas infinito** si la función f(x) se hace tan grande como se quiera (en valor absoluto) siempre que se tomen valores de x suficientemente próximos al número a, pero distintos de él. Se designa :

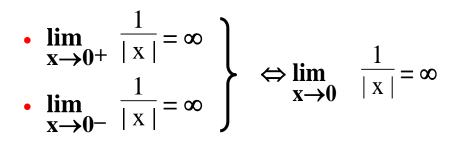
$$\lim f(x) = +\infty$$

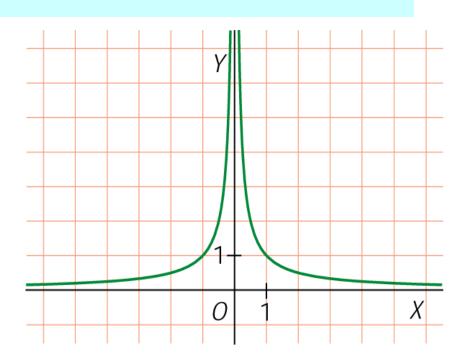
• Se dice qué el límite de f(x) cuando x tiende hacia el punto "a" es **menos infinito** si la función f(x) se hace tan grande como se quiera (en valor absoluto) siempre que se tomen valores de x suficientemente próximos al número a, pero distintos de él. Se designa: $\lim_{x \to \infty} f(x) = -\infty$

Ejemplo: observando la gráfica de la

función $f(x) = \frac{1}{|x|}$ se ve que:

 $x \rightarrow a$



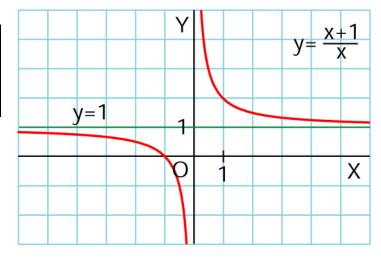


LÍMITE INFINITO EN UN PUNTO: DEFINICIÓN FORMAL

Ejemplo: En la medida en que x se acerca o 0, con valores positivos ¿a quién se acerca f(x) = (x+1) / x?

X	1	0,1	0,01	0,01	\rightarrow	0+
f(x) = (x+1)/x	2	11	101	1001	\rightarrow	$+\infty$

$$\lim_{x \to 0^{+X}} \frac{x+1}{x} = +\infty$$



De igual manera si x se acerca a 0 con valores negativos se ve que: $\lim_{x \to 0^{-X}} \frac{x+1}{-x} = -\infty$

El límite de f(x) cuando x tiende a "a" por la izquierda es menos infinito si para cada número K < 0 existe otro número d > 0 tal que f(x) < K si a - d < x < a donde d debe ser función de K.

LÍMITES FINITOS EN EL INFINITO: DEFINICIÓN

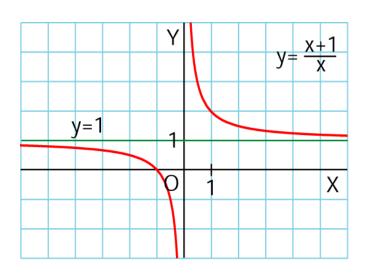
Se dice que el n° L es el límite de f(x) cuando x tiende a infinito (menos infinito), si la distancia | f(x) - L | se hace tan pequeña como se quiera siempre que se tomen valores de x suficientemente grandes (en valor absoluto). De denota

$$\lim_{x \to +\infty} f(x) = L \qquad \lim_{x \to -\infty} f(x) = L$$

Ejemplo (comportamiento en el infinito, límite finito) : En la medida en que x se hace muy grande, con valores positivos ¿a quién se acerca f(x) = (x+1) / x?

X	10	10 ²	10 ³	10 ⁴	\rightarrow	+ ∞
f(x) = (x+1)/x	1,1	1,01	1,001	1,0001	\rightarrow	1

$$\lim_{x \to +\infty} \frac{x+1}{x} = 1$$



LÍMITES INFINITOS EN EL INFINITO: DEFINICIÓN

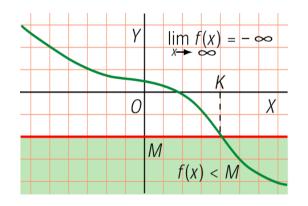
Def: El límite de f(x) cuando x tiende a infinito es infinito si para todo número real M se puede encontrar otro número real K tal que f(x) > M si x > K donde K debe ser función de M.

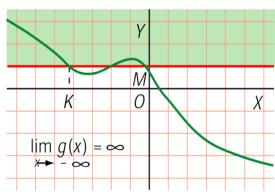
En la medida en que x se hace muy grande, con valores positivos ¿a quién se acerca $f(x) = x^2$?

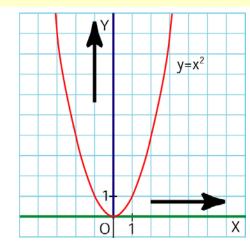
X	10	10 ²	10 ³	10 ⁴	\rightarrow	+ ∞
$f(x) = x^2$	10^2	10^4	10^{6}	10^{8}	\rightarrow	+ 8

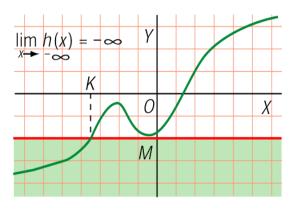
$$\lim_{x \to +\infty} x^2 = +\infty$$

Otros comportamientos en el infinito, gráficamente.



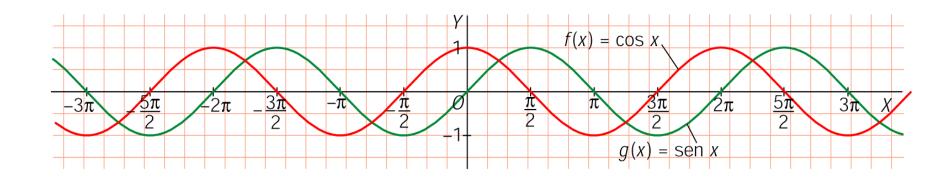






EJEMPLO DE COMPORTAMIENTO EN EL INFINITO: NO EXISTE LÍMITE

Cuando *x* tiende a infinito o x tiende a menos infinito los valores de estas funciones seno y coseno no tienden a ningún valor, ya que oscilan entre 1 y –1. Ambos límites no existen.



CÁLCULO DE LÍMITES

Límites simples

Cuando las funciones verifican $\lim_{x\to a} f(x) = f(a)$ se pueden obtener directamente por el procedimiento de sustituir en la expresión de la función el valor de la variable x por el de a hacia el que tiende.

Algunos límites típicos

•
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

•
$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$
, para todo a

•
$$\lim_{x \to \infty} \frac{e^x}{x^p} = \infty$$
 para todo p

•
$$\lim_{x\to\infty} \frac{\ln x}{x^p} = 0$$
, para todo p > 0

CÁLCULO DE LÍMITES SIMPLES: EJEMPLOS

$$\lim_{x \to 0} \frac{x^2 \cos x + e^{2x}}{\ln(x+1) + x^3 + 1} = \frac{0 \cdot 1 + e^0}{\ln 1 + 0 + 1} = 1$$

$$\lim_{x\to 0} \left(x^2 - 100 + \frac{x^3 + x - 1}{x^2 - 1} \right) = -100 + 1 = -99$$

$$\lim_{x \to 1} \left(\sqrt[3]{\frac{2x^3 - 2x + 1}{x^3 - x + 1}} \right)^{(x^2 - 2x + 1)} = \left(\sqrt[3]{\frac{2 \cdot 1^3 - 2 \cdot 1 + 1}{1^3 - 1 + 1}} \right)^{(1^2 - 2 \cdot 1 + 1)} = 1^0 = 1$$

$$\lim_{x \to 3} \frac{-2x^2 + 3}{x^3 - 2x + 5} = \frac{-2 \cdot 3^2 + 3}{3^3 - 2 \cdot 3 + 5} = -\frac{15}{16}$$

INDETERMINACIONES: TIPOS

Cuando podemos calcular el límite de la operación de dos o más funciones, **aun sin conocerlas**, decimos que el límite es **determinado**. Aplicando las propiedades de los límites podemos obtener el límite buscado. En caso de que no podamos aplicar ninguna propiedad que nos permita calcular el límite, **diremos que es indeterminado**.

$$\lim_{x \to a} f(x) = 2$$

$$\lim_{x \to a} g(x) = 3$$
Entonces
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{2}{3}$$

$$\lim_{x \to a} f(x) = 0$$
$$\lim_{x \to a} g(x) = 0$$

No es posible obtener $\lim_{x\to a} \frac{f(x)}{g(x)}$. Para poder salvar la indeterminación hemos de conocer f y g.

Este resultado no depende de las funciones f y g. El límite es determinado.

Este límite depende de las funciones f y g. El límite es indeterminado.

Tipos de
indeterminaciones

$$\frac{L}{0}/L\neq 0$$

$$\infty - \infty$$

$$\infty_0$$

CUADRO DE INDETERMINACIONES: FORMA DE RESOLVERLAS

Tipos de indeterminaciones

$$\frac{L}{0}/L\neq 0$$

 $\frac{1}{2}$

 $\infty - \infty$

 ∞_0

 0°

 1^{∞}

- •En las del tipo **L/0** con L no nulo, se calculan los límites laterales
- •En las del tipo **0/0** Si hay raíces, se multiplica por el conjugado de la expresión con raíces y luego se factoriza y simplifica
 - · Si no hay raíces, se factoriza y simplifica
- •En las del tipo $\frac{\infty}{\infty}$ Se dividen numerador y denominador por la máxima potencia
- •En las del tipo $\infty \bullet 0$ Se transforman, mediante operaciones, en uno de los anteriores
- •En las del tipo $\infty \infty$
 - •Si no hay radicales se hacen operaciones y se transforma en uno de los anteriores
 - •Si hay radicales, se multiplica y se divide por el conjugado y se transforma en uno del tipo
- •En las de los tipos $\infty^0,0^0$ $y1^\infty$ Se aplican logaritmos o la expresión correspondiente

EJEMPLOS DE CÁLCULO DE INDETERMINACIONES: TIPO L/O, CON L \neq O

En estos casos el límite si existe es $+\infty$ o $-\infty$ dependiendo del signo de la función a izquierda y derecha del valor al cual tiende la variable.

$$\lim_{x \to 2^{-}} \frac{1}{x - 2} = -\infty$$

$$\lim_{x \to 2^+} \frac{1}{x - 2} = +\infty$$

$$\left.\begin{array}{l}
\lim_{x \to 2^{-}} \frac{1}{x - 2} = -\infty \\
\lim_{x \to 2^{+}} \frac{1}{x - 2} = +\infty
\end{array}\right\} \implies \lim_{x \to 2} \frac{1}{x - 2} \text{ no existe}$$

•
$$\lim_{x \to 2^{-}} \frac{1}{(x-2)^2} = +\infty$$

• $\lim_{x \to 2^{+}} \frac{1}{(x-2)^2} = +\infty$
• $\lim_{x \to 2^{+}} \frac{1}{(x-2)^2} = +\infty$

•
$$\lim_{x \to 2^{+}} \frac{1}{(x-2)^2} = +\infty$$

$$\Rightarrow \lim_{x \to 2} \frac{1}{(x-2)^2} = +\infty$$

EJEMPLOS DE CÁLCULO DE INDETERMINACIONES: TIPO 0/0

Cuando el $\lim_{x\to a} \frac{P(x)}{Q(x)}$ es indeterminado $\frac{0}{0}$ siendo P(x) y Q(x) polinomios, pod emos salvar la indeterminación dividiéndolos ambos por (x - a)

•
$$\lim_{x \to 3} \frac{-18 + 21x - 8x^2 + x^3}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 3)^2(x - 2)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{(x - 3)(x - 2)}{(x + 3)} = \frac{0}{6} = 0$$
Indet $\frac{0}{0}$

•
$$\lim_{x \to \frac{3}{2}} \frac{-18 + 33 x - 20 x^2 + 4 x^3}{9 - 12 x + 4 x^2} = \lim_{x \to \frac{3}{2}} \frac{(x - 2)(2x - 3)^2}{(2x - 3)^2} = \lim_{x \to \frac{3}{2}} (x - 2) = \frac{-1}{2}$$
Indet $\frac{0}{0}$

EJEMPLO DE CÁLCULO DE INDETERMINACIONES: TIPO O · ∞

Estas indeterminaciones se resuelven a veces operando previamente para obtener una expresión más sencilla o reduciéndolas a otras del tipo $\frac{0}{0}$ o $\frac{\infty}{\infty}$

Recordando que
$$\lim_{x\to\infty} x^p e^{-x} = 0$$

•
$$\lim_{x \to \infty} (x^3 + 5x^2 + 7x)e^{-x} = \lim_{x \to \infty} x^3 e^{-x} + 5 \lim_{x \to \infty} x^2 e^{-x} + 7 \lim_{x \to \infty} x e^{-x} = 1$$
Indet $0 \cdot \infty$

$$= 0 + 5 \cdot 0 + 7 \cdot 0 = 0$$

Recordando que $\lim_{X \to \infty} \frac{\ln x}{x} = 0$

•
$$\lim_{x \to 0^{+}} x \cdot \ln x = \lim_{x \to 0^{+}} \frac{\ln x}{\frac{1}{x}} = \lim_{y \to \infty} \frac{-\ln y}{y} = 0$$
Indet $0 \cdot \infty$

$$\boxed{1/x = y}$$

EJEMPLOS DE CÁLCULO DE INDETERMINACIONES: TIPO ∞/∞

Cuando el $\lim_{x\to\infty}\frac{P(x)}{Q(x)}$ es indeterminado $\frac{\infty}{\infty}$ siendo P(x) y Q(x) polinomios,

podemos salvar la indeterminación dividiéndolos ambos por la potencia más alta de x que aparezca en ambos.

$$\lim_{x \to \infty} \frac{\frac{-2x^3 + 3x - 5}{-x^3 - 2x + 5} = \lim_{x \to \infty} \frac{\frac{-2 + \frac{3}{x^2} - \frac{5}{x^3}}{-1 - \frac{2}{x^2} + \frac{5}{x^3}} = \frac{-2}{-1} = 2$$
Indet $\frac{\infty}{\infty}$

En otros casos un cambio de variable permite salvar la indeterminación.

$$\lim_{x \to \infty} \frac{\ln (\ln x)}{\ln x} = \lim_{y \to \infty} \frac{\ln y}{y} = 0$$

$$\operatorname{Indet} \frac{\infty}{\infty} \qquad \boxed{\ln x = y}$$

EJEMPLOS DE CÁLCULO DE INDETERMINACIONES: TIPO $\infty - \infty$

En estos casos es aconsejable operar previamente para simplificar, si es posible, la expresión antes de tomar el límite.

Cuando la indeterminación procede de una diferencia de radicales, es conveniente multiplicar y dividir por la expresión conjugada.

$$\lim_{x \to \infty} (x^3 - x^2) = \lim_{x \to \infty} x^2(x - 1) = \infty \cdot \infty = \infty$$

Indet $\infty - \infty$

$$\lim_{x \to \infty} [\sqrt{x^2 + 1} - \sqrt{x^2 - 1}] = \lim_{x \to \infty} \frac{[\sqrt{x^2 + 1} - \sqrt{x^2 - 1}][\sqrt{x^2 + 1} + \sqrt{x^2 - 1}]}{[\sqrt{x^2 + 1} + \sqrt{x^2 - 1}]} =$$

Indet $\infty - \infty$

$$= \lim_{x \to \infty} \frac{(x^2 + 1) - (x^2 - 1)}{[\sqrt{x^2 + 1} + \sqrt{x^2 - 1}]} = \lim_{x \to \infty} \frac{2}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} = \frac{2}{\infty} = 0$$

EJEMPLOS DE CÁLCULO DE INDETERMINACIONES: TIPOS ∞^0 , 0^0

Estas indeterminaciones se resuelven frecuentemente tomando logaritmos y expresando la función inicial como «la exponencial de su logaritmo».

$$\lim_{x \to 0^{+}} x^{x} = \lim_{x \to 0^{+}} e^{\ln(x^{x})} = \lim_{x \to 0^{+}} e^{x \ln x} = e^{0} = 1$$
Indet 0⁰

$$\lim_{x \to +\infty} (x)^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\ln x^{\frac{1}{x}}}$$

$$= \lim_{x \to +\infty} e^{\frac{\ln x}{x}} = e^{0} = 1$$
Indet $(+\infty)^{0}$

Para resolver estas indeterminaciones resulta útil muchas veces recordar la expresión de e^a como límite, combinada con un cambio de variable.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{2x} = \lim_{x \to \infty} \left(\left(1 + \frac{1}{x}\right)^{x}\right)^{2} = \left(\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x}\right)^{2} = e^{2}$$

 $\frac{1}{2x^2 + x^4} = y$

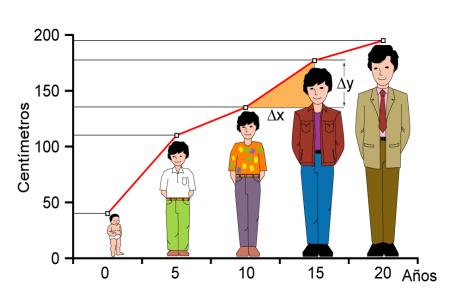
Indet 1^{∞}

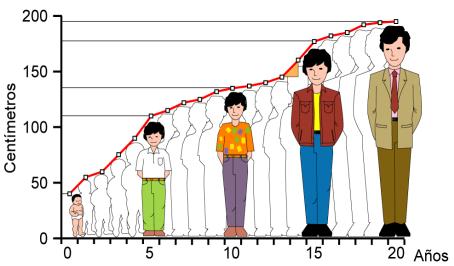
$$\lim_{x \to 0} (1 + 2x^{2} + x^{4})^{\frac{4}{x^{2}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{4}{x^{2}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^{4}}} \right)^{\frac{1}{2x^{2} + x^{4}}} = \lim_{x \to 0} \left(1 + \frac{1}{\frac{1}{2x^{2} + x^$$

Indet 1[∞]

$$= \lim_{y \to \infty} \left[\left(1 + \frac{1}{y} \right)^y \right] \lim_{x \to 0} \frac{4(2x^2 + x^4)}{x^2} = \lim_{y \to \infty} \left[\left(1 + \frac{1}{y} \right)^y \right] \lim_{x \to 0} (8 + 4x^2) = e^8$$

CONTINUIDAD EN UN PUNTO: PRIMERA APROXIMACIÓN





Estatura medida cada 5 años: hay grandes saltos entre cada punto y el siguiente.

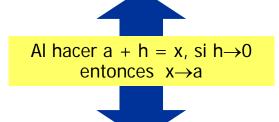
Estatura medida cada año: el incremento entre cada punto y el siguiente será menor, como lo es también el incremento de tiempo.

Una función es **continua** cuando a pequeñas variaciones de la variable independiente le corresponden pequeñas variaciones de la variable dependiente.

CONTINUIDAD EN UN PUNTO: DEFINICIÓN

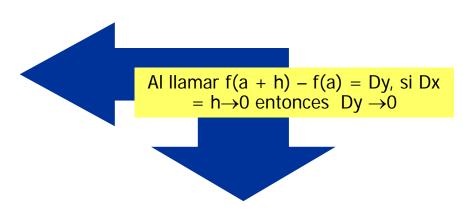
Una función f(x), definida en x = a, es continua en dicho punto cuando:

$$\lim_{h \to 0} [f(a+h) - f(a)] = 0$$



Una función f(x), definida en x = a, es continua en dicho punto cuando:

$$\lim_{x \to a} f(x) = f(a)$$



Una función f(x), definida en x = a, es continua en dicho punto cuando:

$$\lim_{\Delta_X \to 0} \Delta_Y = 0$$

Desglosando la definición de límite

Una función f(x), definida en x = a, es continua en dicho punto cuando:

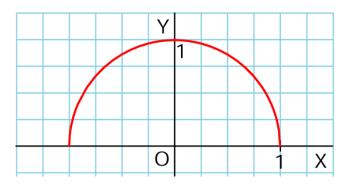
- Existe $\lim_{x \to a} f(x)$
- Existe f(a)
- Los dos valores anteriores son iguales

CONTINUIDAD EN UN INTERVALO: DEFINICIÓN

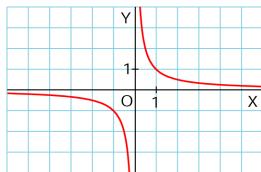
Una función f(x) es continua en a por la derecha si y sólo si $\lim_{x \to a} f(x) = f(a)$

Una función f(x) es continua en a por la izquierda si y sólo si $\lim_{x \to a} f(x) = f(a)$

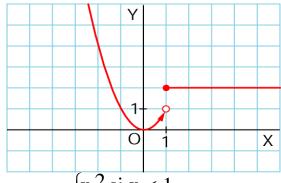
- Una función es continua en un intervalo abierto (a, b) si es continua en cada uno de sus puntos.
- Una función es continua en un intervalo cerrado [a, b] si es continua en cada uno de los puntos del intervalo (a, b), y además es continua en a por la derecha y en b por la izquierda.



 $f(x) = \sqrt{1 - x^2}$ es continua en [-1, 1], pero no es continua ni en 1 ni en-1 porque no lo es por la derecha o por la izquierda.



 $f(x) = \frac{1}{x}$ no es continua en $f(x) = \begin{cases} x^2 \sin x < 1 \\ 2 \sin x \ge 1 \end{cases}$ [-1, 1], porque no está definida en 0.

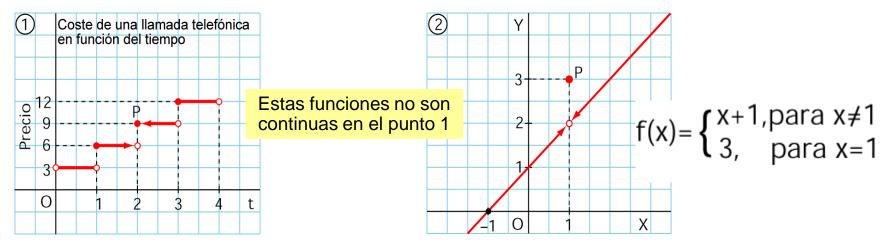


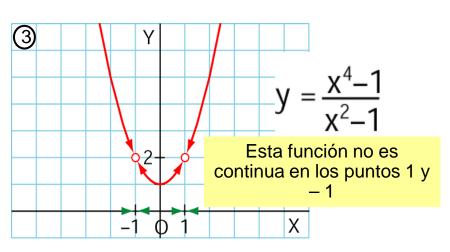
$$f(x) = \begin{cases} x^2 \sin x < 1 \\ 2 \sin x \ge 1 \end{cases}$$
 no es

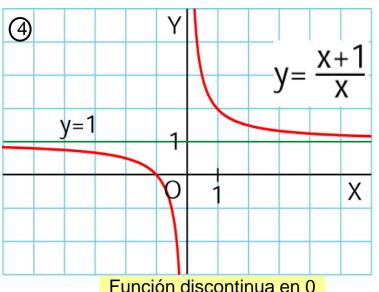
continua en [-1, 1], porque no es continua por la izquierda en 1.

FUNCIÓN DISCONTINUA EN UN PUNTO

Cuando una función no cumple la definición de función continua en un punto se dice que es **discontinua**.



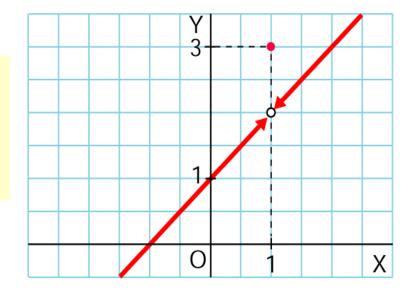




DISCONTINUIDAD EVITABLE

Una función tiene una **discontinuidad evitable** en un punto cuando existe límite en él y no coincide con el valor de la función en el mismo.

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{si } x \neq 1 \\ 3 & \text{si } x = 1 \end{cases}$$



Estudiamos el comportamiento de f(x) en el punto 1:

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2 \neq 3 = f(1)$$

Por tanto f(x) presenta una discontinuidad evitable en el punto 1.

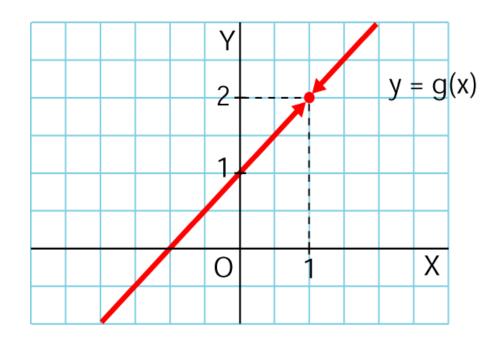
EVITANDO UNA DISCONTINUIDAD EVITABLE

El valor que deberíamos dar a una función en un punto (en el que la función presenta discontinuidad evitable) para que dicha función sea continua es el **verdadero valor de la función** en el punto.

La siguiente función g(x), evita la discontinuidad que presenta f(x) en el punto 1:

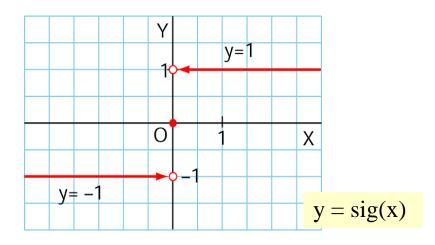
$$g(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{si } x \neq 1 \\ 2 & \text{si } x = 1 \end{cases} = \begin{cases} \frac{(x - 1)(x + 1)}{x - 1} & \text{si } x \neq 1 \\ 2 & \text{si } x = 1 \end{cases} = x + 1$$

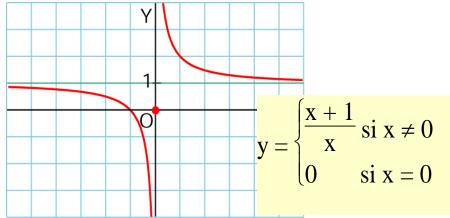
- El verdadero valor de f(x) en el punto 1 es 2.
- La función g(x) es continua en el punto 1.



DISCONTINUIDAD INEVITABLE

- Una función tiene en un punto una discontinuidad inevitable cuando existen los límites laterales en él y son distintos.
- Si f(x) es discontinua en el punto x = a, la diferencia entre los dos límites se llama **salto de la función** en dicho punto.
- Si alguno de los límites laterales en el punto a son infinito, se dice que el salto es infinito



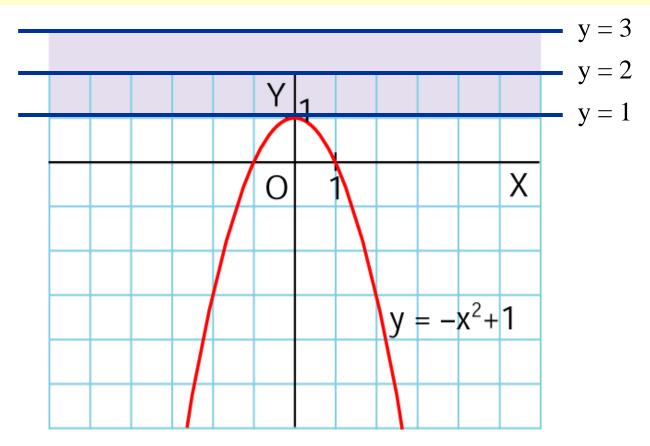


y = sig(x) presenta discontinuidad inevitable en el punto 0 de salto 2.

Esta función presenta discontinuidad inevitable de salto infinito en el punto 0.

FUNCIONES ACOTADAS SUPERIORMENTE

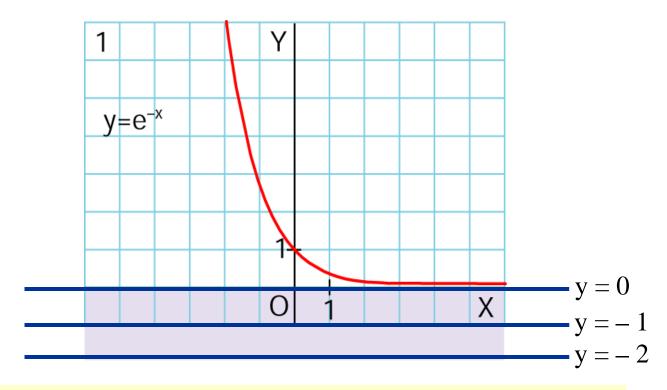
- Una función está **acotada superiormente** cuando existe un número real K' tal que todos los valores que toma la función son menores o iguales que K'.
- El número real K' se llama cota superior.



1, 1.5, 2, p, ... son cotas superiores de la función $y = -x^2 + 1$

FUNCIÓN ACOTADA INFERIORMENTE

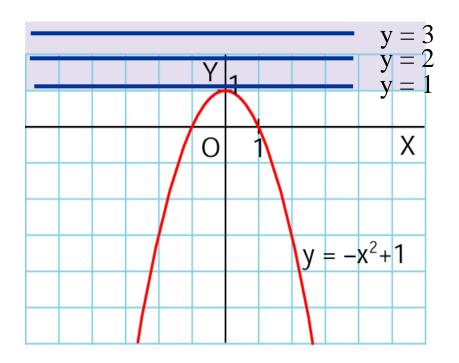
- Una función está acotada inferiormente cuando existe un número real K tal que todos los valores que toma la función son mayores o iguales que K.
- El número real K se llama cota inferior.

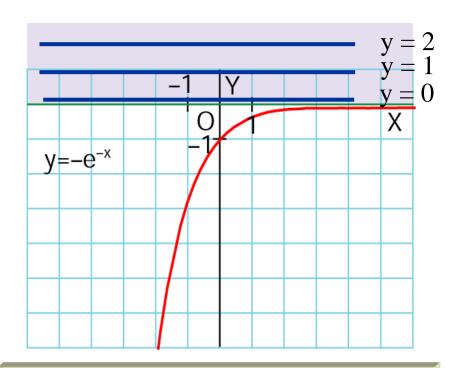


 $0, -1, -1.5, -p, \dots$ son cotas inferiores de la función $y = e^{-x}$

EXTREMO SUPERIOR. MÁXIMO ABSOLUTO

- Se llama extremo superior de una función a la menor de las cotas superiores.
- Si ese valor lo alcanza la función, el extremo superior recibe entonces el nombre de **máximo absoluto**.

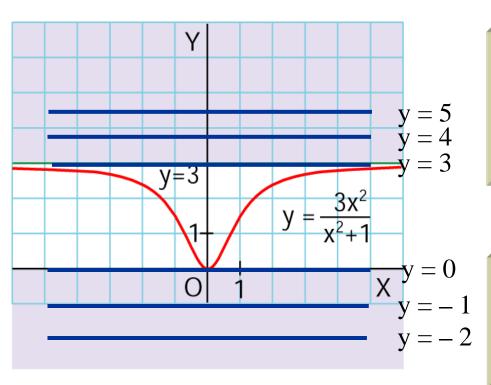




- La menor de las cotas superiores es 1.
- 1 es el extremo superior de esta función.
- Como f(0) = 1, 1 es máximo absoluto de esta función.
- La menor de las cotas superiores es 0.
- 0 es el extremo superior de esta función.
- Como no existe ningún valor de la función tal que f(a) = 0, esta función no tiene máximo absoluto.

EXTREMO INFERIOR. MÍNIMO ABSOLUTO

- Se llama **extremo inferior** de una función a la mayor de las cotas inferiores.
- Si ese valor lo alcanza la función, el extremo inferior recibe entonces el nombre de **mínimo absoluto.**



- La menor de las cotas superiores es 3.
- 3 es el extremo superior de esta función.
- Como no existe ningún valor de la función tal que f(a) = 3, esta función no tiene máximo absoluto.

- La mayor de las cotas inferiores es 0.
- 0 es el extremo inferior de esta función.
- Como además f(0) = 0, 0 es el mínimo absoluto de esta función.